

Контроллер программируемый ЭЛСИ-ТМК. Поддержка протокола передачи данных ГОСТ Р МЭК 61850

РУКОВОДСТВО ПО ПРИМЕНЕНИЮ Часть 4

Инв. № подл. и дата Взам. инв. № Инв. № дубл. Подп. и дата

октябрь 2018

СОДЕРЖАНИЕ

СПИСОК ТЕРМИНОВ И СОКРАЩЕНИЙ	4
ИНФОРМАЦИЯ О ДОКУМЕНТЕ	5
1 ОПИСАНИЕ ПРОТОКОЛА ІЕС850	6
1.1 Общий принцип работы	6
2 КОНФИГУРИРОВАНИЕ IEC850	8
2.1 Добавление устройств в дерево конфигурации	
3 ПРОГРАММИРОВАНИЕ ІЕС850	12
3.1 Библиотека поддержки протокола IEC850 3.2 Создание проекта для Работы с IEC850 3.2.1 Создание проекта для GoosePub. 3.2.1 Создание проекта для GooseSub. 3.2.2 Пример программного кода для работы с IEC850.	21 21 22
ПРИЛОЖЕНИЕ А (СПРАВОЧНОЕ) ПЕРЕЧЕНЬ МЕТОДОВ БИБЛИОТЕКИ	ELSYIEC850LIBRARY.27
ПРИЛОЖЕНИЕ Б (СПАРВОЧНОЕ) ПЕРЕЧЕНЬ ФЕНКЦИЙ БИБЛИОТЕКИ	ELSYIEC850LIBRARY. 29

СПИСОК ТЕРМИНОВ И СОКРАЩЕНИЙ

GOOSE – (англ. Generic Object Oriented Substation Event) Протокол передачи данных о

событиях на подстанции (стандарт МЭК 61850-8-1);

IEC – International Electrotechnical Commission, См. также МЭК;

POU - Program Organization Unit. Компонент организации программ, программный

компонент;

Кадр – Количество информации, состоящей из переменного числа байт

передаваемой/получаемой протоколом за один раз;

Контроллер – Контроллер программируемый ЭЛСИ-ТМК;

КП – Контролируемый пункт;

МЭК – Международная электротехническая комиссия. См. также ІЕС;

ПЛК – Программируемый логический контроллер;

ПО – Программное обеспечение; РЭ – Руководство по эксплуатации.

ИНФОРМАЦИЯ О ДОКУМЕНТЕ

Настоящее руководство по применению (далее - РП) содержит информацию по поддержке протокола передачи данных ГОСТ Р МЭК 61850-5-2011 (далее – МЭК850 (IEC850)). Данная информация необходима пользователю для правильной эксплуатации программируемого логического контроллера ЭЛСИ-ТМК (далее – контроллер).

РП является дополнением к основному документу «Контроллер программируемый ЭЛСИ-ТМК. Поддержка протокола передачи данных ГОСТ Р МЭК 61850 Руководство по применению».

Сведения, содержащиеся в документе, проверены на соответствие аппаратному и программному обеспечению на момент поставки контроллера. В связи с текущим совершенствованием продукции и документации, пользователю целесообразно следить за обновлениями через сайт производителя.

Авторские права на настоящий документ принадлежат компании АО «ЭлеСи». Копирование и распространение настоящего документа без письменного разрешения владельца авторских прав запрещено.

Контактная информация:

- почтовый адрес: **АО** «ЭлеСи», 634021, г. Томск, ул. Алтайская, 161а;
- тел. (3822) 601-000, факс (3822) 601-001;
- официальный сайт компании: www.elesy.ru.

1 ОПИСАНИЕ ПРОТОКОЛА ІЕС850

1.1 Общий принцип работы

Программное обеспечение ЦП ПЛК ЭЛСИ-ТМК обеспечивает прием и передачу данных по протоколу GOOSE (IEC 61850 v1 и V2). Принимаемые и передаваемые данные доступны в задаче CoDeSys. Работа с программного обеспечения условно разделяется на три уровня (см. рисунок 1.1):

- 1. Уровень задачи пользователя;
- 2. Уровень конфигурирования;
- 3. Системный уровень.

На уровне задачи пользователя производится выделение прикладных данных получаемых GOOSE пакетов и формируются даные для передачи. Для упрощения обработки прикладных данных в состав TSP контроллера включенна библиотека Elsylec850Library в которой находятся необходимые функциональные блоки и функции.

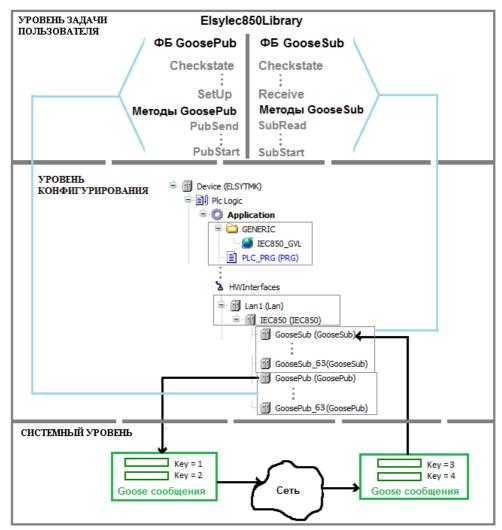


Рисунок 1.1 – Уровни обработки GOOSE сообщений

На уровне конфигурирования происходит выстраивание структуры системы.

Системный уровень обеспечивает поддержку приема и передачи MULTICAST сообщений в сети в соотвествии с требованиями протокола ГОСТ Р МЭК 61850-5-2011 и

предварительную обработку принятых данных при необходимости. На данном уровне выполняется формирование необходимых для работы приемных буферов (устройство GooseSub, GoosePub) и производится фильтрация поступающих данных (параметры для фильтрации приведены в таблице 2.3), на следующий уровень передаются данные соответвущие заданным фильтрам. При необходимости пользователь может самостоятельно (в задаче пользователя) полностью обрабатывать принятые данные. Все параметры системного уровня задаются в устройствах GooseSub, GoosePub устройства IEC850 дерева устройств контроллера.

ВНИМАНИЕ! Поддержка протокола Goose в ПЛК ЭЛСИ-ТМК разрешается только при наличии лицензии на данную функцию.

Для получения данных протокола GOOSE в задаче пользователя необходимо выполнить следующие действия:

- 1. Убедиться и при необходимости добавить лицензию на поддержку протокола IEC850;
- 2. Создать конфигурацию контроллера, добавить в дерево устройство IEC850;
- 3. Добавить в устройство IEC850 необходимое количество устройств **GooseSub/GoosePub** и задать необходимые для фильтарации параметры;
- 4. Добавить в состав проекта библиотеку **ElsyIEC850Library** (данная библиотека добвляется автоматически);
- 5. Создать в декларативной части задаче пользователя (соотвествующее заданным в дереве устройств GooseSub/GoosePub) необходимое количество экземпляров ФБ ElsyIec850Library.GoosePub;
- 6. Создать в декларативной части задаче пользователя массивы для приема/передачи GOOSE сообщений;
- 7. Выполнить в задаче пользователя инициализацию экзепляра ФБ (передать указатели на массив для приема сообщения) и связывание его с необходимым устройством **GooseSub/GoosePub**. Связываение производиться по ключу задаваемым параметром **Key**.
- 8. В процессе работы контролировать прием и передачу GOOSE сообщений и производить обработку данных.

2 КОНФИГУРИРОВАНИЕ ІЕС850

2.1 ДОБАВЛЕНИЕ УСТРОЙСТВ В ДЕРЕВО КОНФИГУРАЦИИ

Для работы с ІЕС850 необходимо:

- 1. В дереве устройств найти узел Lan и нажать на него правой кнопкой мыши. В появившемся контекстном меню выбрать команду $\ensuremath{\textit{Добавить устройство}}$ В окне добавления устройств выбрать $\ensuremath{\textit{Pashoe}} {\rightarrow} \ensuremath{\textit{IEC850}}$ и нажать кнопку «Добавить устройство».
- 2. В дереве устройств найти IEC850 и нажать правой кнопкой мыши. В появившемся контекстном меню выбрать команду Добавить устройство.... В окне добавления устройств выбрать $Оборудование компании ЭлеСи <math>\rightarrow \Pi JK \rightarrow IP \rightarrow GooseSub$ и нажать кнопку «Добавить устройство».
- 3. В дереве устройств найти *IEC850* и нажать правой кнопкой мыши. В появившемся контекстном меню выбрать команду *Добавить устройство...*. В окне добавления устройств выбрать *Оборудование компании ЭлеСи→ПЛК→IP→GoosePub* и нажать кнопку «Добавить устройство».

Итоговая конфигурация представлена на рисунке 2.1.

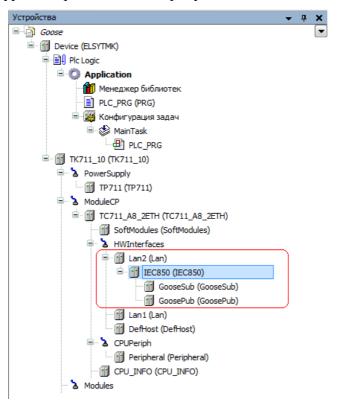


Рисунок 2.1 – Дерево устройств. Конфигурация ІЕС850

Примечания:

- 1. В дерево устройств можно добавить только одно устройство *IEC850*.
- 2. В дерево устройств можно добавить до 64 логических устройств GooseSub.
- 3. В дерево устройств можно добавить до 64 логических устройств GoosePub.
- 4. Работа с *IEC850* не предусмотрена для ЦП *TC712*.
- 5. При работе с *IEC850* рекомендуется использовать только *Lan1*.

Во вкладке *Редактор параметров* устройства *IEC850* представлены информационные параметры (таблица 2.1). Информационные параметры не доступны для редактирования пользователем.

Таблица 2.1 – Информационные параметры модуля «IEC850»

Имя параметра	Значение	Описание параметра
Информация модуля		
License	no data	Наличие лицензии (0 - отсутствует, 1 - присутствует)

Во вкладке *Редактор параметров* под информационными параметрами модуля расположена кнопка «Generate», предназначенная для автоматической генерации глобальных переменных для *GooseSub* и *GoosePub* в соответствии с установленными конфигурационными параметрами. Для генерации массива, необходимо поставить галочку в графе «Create array» и нажать на кнопку «Generate» (рисунок 2.2). После нажатия кнопки «Generate» в дереве устройтв появляется папка *GENERIC*, в которой содержатся глобальные переменные. При повторном нажатии на кнопку «Generate» папка *GENERIC* удаляется.

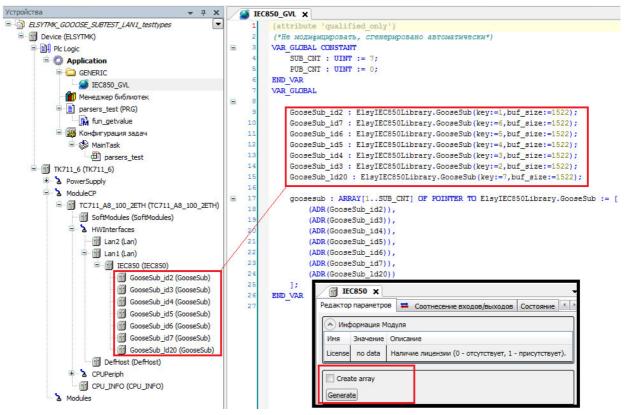


Рисунок 2.2 – Устройство ІЕС850. Область генерации глобальных переменных

Во вкладке *Соотнесение входов/выходов* для *IEC850* представлен перечень сигналов модуля (таблица 2.2).

Таблица 2.2 - Сигналы устройства «IEC850»

Имя канала	Тип	Адрес	Начальное значение	Описание параметра
SigLicense	BYTE	%IB209	0	Наличие лицензии (0 - отсутствует, 1 - присутствует)

Примечание: в таблицах 2.1 и 2.2 указаны переменные, информирующие пользователя о наличии/отсутствии лицензии на возможность применения в контроллере ЭЛСИ-ТМК **IEC850**. Признаком отсутствия лицензии является нулевое значение

параметров в указанных таблицах. Получение лицензии производится в соответствии с документом «Программа установки лицензий "setlic". Инструкция по применению».

2.2 Параметры и сигналы устройств GooseSub и GoosePub

Слот *GooseSub* предназначен для приема Goose сообщений. Во вкладке *Редактор параметров* устройства *GooseSub* представлены информационные и конфигурационные параметры (таблица 2.3). Информационные параметы не доступны для редактирования пользователем.

Таблица 2.3 - Конфигурационные параметры устройства «GooseSub»

TT			
Имя параметра	Тип	Значение по умолчанию	Описание параметра
Информация	модуля	<i>y</i>	
Key	UDINT	1	Ключ соединения
SlotReg	INT	no data	Результат регистрации коммуникационного слота в системе:
			1 – устройство не обработано драйвером.
Конфигураци	онные пара	метры	
Dest_MAC	STRING	01:0C:CD:01.0:0	МАС адреса мультикаст группы (6 байт).
Src_MAC	STRING	00:00:00:00:00:0	МАС адрес источника (если поле заданно 00.00.00.00.00.00, то оно
		0	не участвует в формировании фильтра сообщение и приём ведётся
			с любым значением этого поля) (6 байт)
VLAN_ID	UINT	0	Номер VLAN (0 – работа без VLAN)
			(2 байт) в случае значение 0, кадр меньше на 2 байта
EtherType	UINT	16x88b8	Тип Ethernet кадра
APP_ID	UINT	16x0002	Идентификатор приложения (значение в диапазоне 00xFFFF)
Buf_size	UINT	1522	Максимальный размер буфера на прием.
GoCBRef	STRING		Идентификатор блока управления (ASCII строка длиной от θ до
			128 символов). Если длина строки 0, то этот параметр не участвует
			в формировании фильтра сообщения.
datSet	STRING		Идентификатор набора данных (ASCII строка длиной от 0 до 128
			символов). Если длина строки 0, то этот параметр не участвует в
			формировании фильтра сообщения.
goID	STRING		Идентификатор сообщения (строка от 0 до 128 символов). Если
			длина строки 0, то этот параметр не участвует в формировании
			фильтра сообщения.
confRev	UDINT	1	Версия GOOSE сообщения, если содержимое пакета меняется, то
			по этому полю осуществляется контроль.

ВНИМАНИЕ! Сущетсвует возможность не задавать необходимые параметры фильтрации на системном уровне, а выполнять обработку полученного GOOSE сообщения полностью в задаче пользователя. В этом случае все данные будут полученны в один буфер в конкурирующем доступе, обработка будет производиться со скоростью работы задачи пользователя. В данном случае возможна потеря данных.

Примечания:

- 1. При задании фильтра типа STRING (GoCBRef, datSet, goID) необходимо указывать "\$\$", который соответствует ASCII символу \$. Это связано с особенностью текстовых строк стандарта IEC 61131-3. В текстовых строках CoDeSys символ "\$" является "спецсимволом" и знак после него рассматривается как код, для ввода непечатных символов. Эта информация есть в описании CoDeSys и является общим правилом.
- 2. Существует возможность частичного задания фильтра (учитываются только заданные начальные символы). Например, для в параметре *GoCBRef* вместо "IED1LD7/LLN0\$GO\$gcb07" можно задать "IED1LD7" и получать все данные

IED1 от логического устройства LD7. Пользоваться с осторожностью! При задании параметра *GoCBRef* "**IED1**" будут полученны данные всех логических устройств в один буфер в конкурирующем доступе.

Слот *GoosePub* пердназначен для передачи Goose сообщений. Во вкладке *Редактор параметров* устройства *GoosePub* представлены информационные и конфигурационные параметры модуля (таблица 2.4). Информационные параметры не доступны для редактирования пользователем.

Таблица 2.4 - Конфигурационные параметры устройства «GoosePub»

Имя параметра	Тип	Значение по умолчанию	Описание параметра
Информация мод	дуля		
Key	UDINT	1	Ключ соединения
SlotReg	INT	no data	Результат регистрации коммуникационного слота в системе:
			0 - устройство не обработано драйвером;
			1- слот добавлен в систему успешно;
			-1 – ошибка добавления слота в систему.
Конфигурацион	ные параметрі	Ы	
Dest_MAC	STRING	01:0C:CD:01:00:00	МАС адрес мультикаст группы (6 байт)
Src_MAC	STRING	00:00:00:00:00	МАС адрес источника (если поле задано 00:00:00:00:00:00, то оно не участвует в формировании фильтра сообщения и прием ведется с любым значением этого поля) (6 байт)
VLAN_ID	UINT	0	Hомер VLAN (0 – работа без VLAN)
EtherType	UINT	16x88b8	Тип Ethernet кадра
APP_ID	UINT	16x0002	Идентификатор приложения (значение в диапазоне 00xFFFF)
Buf_size	UINT	1522	Максимальный размер буфера на прием.
GoCBRef	STRING		Идентификатор блока управления (ASCII строка длиной от
			0 до 128 символов). Если длина строки 0, то этот параметр не участвует в формировании фильтра сообщения.
datSet	STRING		Идентификатор набора данных (ASCII строка длиной от <i>0</i> до <i>128</i> символов). Если длина строки 0, то этот параметр не участвует в формировании фильтра сообщения.
goID	STRING		Идентификатор сообщения (строка от 0 до 128 символов). Если длина строки 0, то этот параметр не участвует в формировании фильтра сообщения.
confRev	UDINT	1	Версия GOOSE сообщения, если содержимое пакета меняется, то по этому полю осуществляется контроль.
MinTime	UDINT	10	Время первого повтора передачи GOOSE сообщения, мс.
Multiplier	UDINT	2	Множитель времени последующих повторов передачи GOOSE сообщения, до достижения максимального значения, определенного параметром final.
MaxTime	UDINT	200	Максимальное время между передачей двух GOOSE сообщений, мс.

3 ПРОГРАММИРОВАНИЕ ІЕС850

3.1 Библиотека поддержки протокола IEC850

Для работы с *IEC850* в *CoDeSys* существует библиотека **Elsylec850Library**. Данная библиотека добавляется автоматически. В случае удаления библиотеки пользователем, добавить библиотеку можно следующим образом:

1. В дереве устройств проекта найти *Менеджер библиотек* (либо в верхней строке меню *CodeSys* найти меню *Инструменты*—*Менеджер библиотек*). В появившейся вкладке менеджера библиотек нажать на кнопку «Добавить библиотеку» (рисунок 3.1).

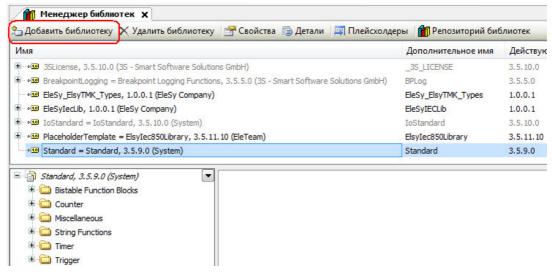


Рисунок 3.1 – Вкладка Менеджер библиотек. Добавление библиотеки

- 2. В появившемся окне *Библиотека* в верхней строке ввода ввести название библиотеки **Elsylec850Library**.
- 3. Выбрать необходимую библиотеку в столбце *Совпадение* окна *Библиотека* и нажать кноку «ОК» (рисунок 3.2).

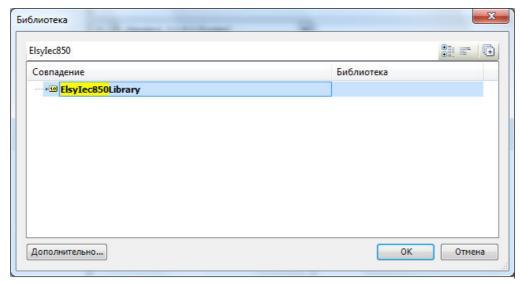


Рисунок 3.2 – Вкладка Менеджер библиотек. Добавление библиотеки

Библиотека Elsylec850Library содержит функциональные блоки GooseSub и GoosePub для работы с *IEC850*.

Назначение ΦB GooseSub — связь с заданным в дереве устройством GooseSub и обеспечение доступа к данным из программы пользователя через данные и методы ΦB . Для включения в проект CoDeSys экземпляра функционального блока необходимо в разделе переменных указать переменную с типом Elsylec850Library. GooseSub. Графическая структура ΦB GooseSub изображена на рисунке 3.3.

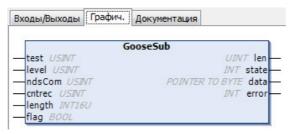


Рисунок 3.3 - Структура ФБ GooseSub

Описание переменных ФБ представлено в таблице 3.1.

Таблица 3.1 – Перечень переменных ФБ GooseSub

Имя	Тип	Описание	
test	USINT	Признак работы в тестовом режиме.	
level	USINT	Уровень вложения структур.	
ndsCom	USINT	Признак неисправности оборудования.	
cntrec	USINT	Количество записей.	
length	INT16U	Размер datasets.	
flag	BOOL	Флаг приема.	
len	UINT	Принятый размер данных.	
state	INT	Состояние ФБ, обновляется по вызову любого метода.	
		0 bit – инициализация ФБ:	
		$1 - \Phi Б$ инициализирован;	
		θ – ошибка инициализации.	
		1 bit – связь ФБ с сетевой компонентой:	
		1 – наличие связи с сетевой компонентой;	
		0 – отсутствие связи с сетевой компонентой.	
		2 bit – нахождение ФБ в состоянии «старт/стоп»:	
		1 – состояние «старт»;	
		θ – состояние «стоп».	
		3 bit - наличие в буфере новых несчитанных данных:	
		1 – есть новые несчитанные данные;	
		0 – нет новых несчитанных данных.	
		4 bit – размер принятого кадра:	
		1 – нет;	
		0 – размер принятого кадра больше пользовательского буфера	
		(необходимо увеличить размер буфера)	
data	POINTER TO BYTE	Буфер под данные на перием	
error	INT	Ошибка завершения вызова блока:	
		0 — нет ошибки;	
		-1 – ошибка;	
		Коды ошибок:	
		1 – данные ФБ не инициализированы;	
		2 – ошибка регистрации слота;	
		3 – ошибка запуска ФБ;	
		4 – ошибка остановки ФБ.	

ФБ **GooseSub** содержет следующие методы:

- *CheckState* проверка состояния ФБ.
- Init обеспечиват инициализацию и связываение экземпляра ΦE с функцией открытого в системе сетевого сокета.

- *Receive* прием пользовательских данных.
- *Stop* блокирует прием данных (задаче данные не доступны);
- *Start* возобновляет прием данных в задачу.

Примечание: Методы receive, start и stop можно вызывать только после метода init. Метод checkstate можно вызвать на любом этапе работы программы.

Более подробное описание методов предсталено в приложении А.

Назначение ФБ **GoosePub** – передача Goose сообщений. Для включения в проект CoDeSys экземпляра функционального блока необходимо в разделе переменных указать переменную с типом **Elsylec850Library.GoosePub**. Графическая структура ФБ **GoosePub** изображена на рисунке 3.4.

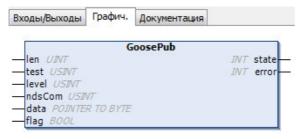


Рисунок 3.4 - Структура ФБ GoosePub

Описание переменных ΦB GoosePub представлено в таблице 3.2.

Таблица 3.2 – Перечень переменных ФБ GoosePub.

Имя	Тип	Описание
len	UINT	Размер буфера на передачу
test	USINT	Признак работы в тестовом режиме.
level	USINT	Уровень вложения структур
ndsCom	USINT	Признак неисправности оборудования.
data	POINTER TO	Буфер под данные на передачу.
	BYTE	
flag	BOOL	Флаг передачи.
state	INT	Состояние ФБ, обновляется по вызову любого метода.
		0 bit – бит инициализации ФБ:
		$1 - \Phi Б$ инициализирован;
		θ – ошибка инициализации.
		1 bit – связь ФБ с сетевой компонентой:
		1 – наличие связи с сетевой компонентой;
		0 – отсутствие связи с сетевой компонентой.
		2 bit – нахождение ФБ в состоянии «старт/стоп»:
		1 – состояние «старт»;
		0 — состояние «стоп».
error	INT	Ошибка ФБ, обновляется по вызову любого метода. Коды завершения
		вызова ФБ:
		0 – успешное завершение;
		-1 – ошибка.
		Коды ошибок:
		1 – данные ФБ не инициализированы;
		2 – ошибка регистрации слота;
		3 – ошибка запуска ФБ;
		4 – ошибка остановки ФБ;
		5 – превышен размер передаваемого буфера;
		6 – ошибка передачи.

ФБ **GoosePub** содержет следующие методы:

- *Checkstate* проверка состояния ФБ.
- Init обеспечиват инициализацию и связываение экземпляра ΦE с функцией открытого в системе сетевого сокета.
- *SetUp* ставит на передачу заданный в устройстве буфер (Goose-сообщение).
- *Stop* остановка передачи на системном уровне последнего покета данных;
- *Start* запуск передачи данных (после старта возобновляется передача старого пакета с временным разгоном (Multiplier, MinTime, MaxTime)).

Примечание: Методы *setup*, *start* и *stop* можно вызывать только после метода *init*. Метод *checkstate* можно вызвать на любом этапе работы программы.

Более подробное описание методов представлено в приложении А.

- В библиотеке **Elsylec850Library** реализован набор функций для упрощения работы с данными GOOSE сообщений. Все функции разделены на 5 группы:
 - 1. Служебные;
 - 2. Функции группы ByIdx;
 - 3. Функции группы ByOffset;
 - 4. Функции группы Publisher;
 - 5. Функции группы Subscribe.

Служебные функции предназначены для расчета определения смещения блока данных внутри GOOSE сообщения (в соотвествии с протоколом IEC850 блок данных может иметь различное смещение). Группа функций *ByIdx* предназначена для получения данных по номеру индекса. Группа функций *ByOffset* предназначена для получения данных по смещению внутри Goose-сообщения. Перечень функций и их описание представлены в приложении Б.

Функции группы *Publisher* предназначены для работы при отправке Goose-сообщений. Функции группы *Subscribe* предназначении для работы при получении Goose-сообщений. Перечень функций и их описание:

Функции группы Subscribe:

- Goose_GetArray функция получения записи Array из dataset по порядковому номеру. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetBinTime функция получении Bin Time из dataset по порядковому номеру. Возвращаемые значения:
 - -1 ошибка:
 - 0 ошибок нет.
- Goose_GetBool функция получения записи Bool из dataset по порядковому номеру. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.

- Goose_GetByte функция получения записи Byte из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetDataRec функция получения записи из dataset/структуры. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetDInt функция получения записи DInt из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_DWord функция получения записи DWord из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetInt функция получения записи Int из dataset по смещению. Возвращаемые значения:
 - -1 ошибка:
 - 0 ошибок нет.
- Goose_GetLInt функция получения записи LInt из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetLReal функция получения записи LReal из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetLWord функция получения записи LWord из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetMString функция получения записи GetMString из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetOString функция получения записи OString из dataset по смещению. Возвращаемые значения:

- -1 ошибка;
- 0 ошибок нет.
- Goose_GetReal функция получения записи Real из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetSint функция получения записи SInt из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetString функция получения записи String из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetUDInt функция получения записи Udint из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetUInt функция получения записи UInt из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetULInt функция получения записи ULInt из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetUSint функция получения записи USInt из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetUTCTime функция получения записи UTS Time из dataset по порядковому номеру. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_GetValue функция получения любой записи из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.

- Goose_GetWord функция получения записи Word из dataset по смещению. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_SubRead функция получения всех записей из dataset. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_SubStart функция получения смещения записи до dataset. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.

Функции группы Publisher:

- Goose_PubSend функция для формирования Datasets из массива данных. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PubStart функция для сброса элементов DataSets. Возвращаемые значения:
 - -1 ошибка:
 - 0 ошибок нет.
- Goose_PutArray функция для формирования записи Goose сообщения типа Array. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutBegin функция для формирования записи Goose сообщения типа ExStruct. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutBinTime функция для формирования записи Goose сообщения типа Bin Time. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutBool функция для формирования записи Goose сообщения типа Bool. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutByte функция для формирования записи Goose сообщения типа Byte. Возвращаемые значения:

- -1 ошибка;
- 0 ошибок нет.
- Goose_PutDInt функция для формирования записи Goose сообщения типа DInt. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutDWord функция для формирования записи Goose сообщения типа DWord. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutEnd функция для формирования завершения записи Goose сообщения типа ExStruct. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutInt функция для формирования записи Goose сообщения типа Int. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutLInt функция для формирования записи Goose сообщения типа LInt. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutLReal функция для формирования записи Goose сообщения типа LReal. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutLWord функция для формирования записи Goose сообщения типа LWord. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutMString функция для формирования записи Goose сообщения типа MMS String. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutOString функция для формирования записи Goose сообщения типа Octet String. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.

- Goose_PutReal функция для формирования записи Goose сообщения типа Real. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutSInt функция для формирования записи Goose сообщения типа SInt. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutString функция для формирования записи Goose сообщения типа String. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutUDInt функция для формирования записи Goose сообщения типа UDInt. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutUInt функция для формирования записи Goose сообщения типа UInt. Возвращаемые значения:
 - -1 ошибка:
 - 0 ошибок нет.
- Goose_PutULInt функция для формирования записи Goose сообщения типа ULInt. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutUSInt функция для формирования записи Goose сообщения типа USInt. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutUTCTime функция для формирования записи Goose сообщения типа UTC Time. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutValue функция для формирования записи Goose сообщения. Возвращаемые значения:
 - -1 ошибка;
 - 0 ошибок нет.
- Goose_PutWord функция для формирования записи Goose сообщения типа Word. Возвращаемые значения:

- -1 ошибка;
- 0 ошибок нет.
- 3.2 СОЗДАНИЕ ПРОЕКТА ДЛЯ РАБОТЫ С ІЕС850

Ниже представлены создания проектов для работы с **IEC850**.

3.2.1 Создание проекта для GoosePub

Для создания проекта необходимо:

- 1. Открыть среду разработки *CoDeSys* и создать новый *стандартный проект*, указав его имя и расположение на компьютере. В окне стандартного проекта выбрать устройство **ELSYTMK** и язык программирования **ST**.
- 2. Сконфигурировать проект. Для этого:
- а. Правой кнопкой мыши нажать на устройство *Device* и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать коммутационную панель **TK711_6**.
- b. Выбрать блок питания **TP711**, нажав на устройство *PowerSupply* и выбрав команду контекстного меню *Добавить устройство*....
- с. Нажать на устройство *ModuleCP* правой кнопкой мыши и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать устройство **TC711_A8_100_2ETH**.
- d. Нажать на устройство *Lan1* правой кнопкой мыши и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать устройство **IEC850**.
- е. Нажать на устройство IEC850 правой кнопкой мыши и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать устройство **GoosePub**.
- f. Перейти во вкладку *Редактор параметров* для *GoosePub*, нажав на него дважды левой кнопкой мыши, и выбрать необходимые конфигурационные параметры устройства.
- g. Сгенерировать глобальные переменные. Для этого перейти во вкладку *Редактор параметров* устройства **IEC850**, нажав на него дважды левой кнопкой мыши. Поставить галочку в графе *Create array* и нажать кнопку «Generate». Сгенерированные глобальные переменные помещаются в дерево устройств в папку **GENERIC**.
- 3. Создать программный код:
- а. Перейти во вкладку создания программы **PLC_PRG**, дважды нажав на нее левой кнопкой мыши.
- b. В верхней области вкладки **PLC_PRG** ввести переменные:

```
PROGRAM PLC_PRG
VAR
state : INT := 0;
result : INT;
recs : ARRAY[1..2] OF ElsyIEC850Library.DataRec;
END_VAR
```

с. В нижней области вкладки **PLC_PRG** ввести код программы:

```
CASE state OF
       0: (* инициализируем *)
       result := IEC850_GVL.gpub_array[1]^.init();
       IF result = 0 THEN
           state := 1;
       END IF
       1: (* подготовка пакета *)
       result:= ElsyIEC850Library.Goose_PubStart(ADR(IEC850_GVL.gpub_array[1]));
       IF result = 0 THEN
           (* подготовить записи recs*)
           result := ElsyIEC850Library.Goose_PubSend(ADR(IEC850_GVL.gpub_array[1]),ADR(recs),2);
           IF result = 0 THEN
                    state := 2;
           END_IF
       END IF
       2:(* отправка пакета *)
       result := IEC850_GVL.gpub_array[1]^.setup();
       IF result = 0 THEN
           state := 1:
       END IF
END CASE
```

Программный код начинается с инициализации, затем происходит подготовка пакета данных, подготовка записи recs и отправка пакета.

Подготовить записи recs можно тремя способами:

- С помощью функции PubSend, которая формирует DataSets из массива данных.
- С помощью функции PutValue.
- С помощью функций стандартных переменных (PutReal, PutInt и др.).

Примечание: при фомировании datasets возможно использование структур, глубина вложенности структур в структурах не должна превышать 5.

- d. Сгенерировать код, выбрав в верхней панели меню *Компиляция*→*Генерировать код*. Устранить ошибки при их наличии.
- 4. Установить связь с контроллером. Для этого необходимо дважды нажать левой кнопкой мыши на устройство *Device*, перети во вкладку *Установка соединения* и нажать кнопку «Сканировать сеть...». В появившемся окне выбрать необходимое устройство.

Более подробное описание этапов создания проекта представлено в документе «Контроллер программируемый ЭЛСИ-ТМК. Руководство по применению. Часть 1».

3.2.1 Создание проекта для GooseSub

Для создания проекта необходимо:

- 1. Открыть среду разработки *CoDeSys* и создать новый *стандартный проект*, указав его имя и расположение на компьютере. В окне стандартного проекта выбрать устройство **ELSYTMK** и язык программирования **ST**.
- 2. Сконфигурировать проект. Для этого:

- а. Правой кнопкой мыши нажать на устройство *Device* и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать коммутационную панель **TK711_6**.
- b. Выбрать блок питания **TP711**, нажав на устройство *PowerSupply* и выбрав команду контекстного меню *Добавить устройство*....
- с. Нажать на устройство *ModuleCP* правой кнопкой мыши и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать устройство **TC711_A8_100_2ETH**.
- d. Нажать на устройство *Lan1* правой кнопкой мыши и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать устройство **IEC850**.
- е. Нажать на устройство IEC850 правой кнопкой мыши и выбрать в контекстном меню команду *Добавить устройство*.... В появившемся окне выбрать устройство **GooseSub**.
- f. Перейти во вкладку *Редактор параметров* для *GooseSub*, нажав на него дважды левой кнопкой мыши, и выбрать необходимые конфигурационные параметры устройства.
- g. Сгенерировать глобальные переменные. Для этого перейти во вкладку *Редактор параметров* устройства **IEC850**, нажав на него дважды левой кнопкой мыши. Поставить галочку в графе *Create array* и нажать кнопку «Generate». Сгенерированные глобальные переменные помещаются в дерево устройств в папку **GENERIC**.
- 5. Создать программный код:
- а. Перейти во вкладку создания программы **PLC_PRG**, дважды нажав на нее левой кнопкой мыши.
- b. В верхней области вкладки **PLC_PRG** ввести переменные:

```
PROGRAM PLC_PRG
VAR
state: INT := 0;
result: INT;
recs: ARRAY[1..2] OF ElsylEC850Library.DataRec;
gsub: POINTER TO ElsylEC850Library.GooseSub;
END VAR
```

gsub := ADR(IEC850 GVL.gsub array[1]);

с. В нижней области вкладки **PLC_PRG** ввести код программы:

```
CASE state OF

0: (* инициализируем *)
result := gsub^.init();
IF result = -1 THEN RETURN; END_IF;
state := 1;

1:(* получение пакета *)
(*прием данных*)
result := gsub^.receive();
IF result = -1 THEN RETURN; END_IF;

(*установка datasets в начало *)
result := Elsylec850Library.Goose_SubStart(gsub);
IF result = -1 THEN RETURN; END_IF;
```

```
(*извлекаем данные из datasets*)
result := Elsylec850Library.Goose_GetValue(gsub,1,ADR(recs[1]));
END CASE
```

Программный код начинается с инициализации, затем происходит получение пакета данных, которое включает в себя прием данных и установку dadasets в начало

Прием данных можно произвести тремя способами:

- С помощью функции SubRead, которая получает все записи из datasets.
- С помощью функции GetValue.
- С помощью функций стандартных переменных (GetReal, GetInt и др.).
- d. Сгенерировать код, выбрав в верхней панели меню *Компиляция*→*Генерировать код*. Устранить ошибки при их наличии.
- 6. Установить связь с контроллером. Для этого необходимо дважды нажать левой кнопкой мыши на устройство *Device*, перети во вкладку *Установка соединения* и нажать кнопку «Сканировать сеть...». В появившемся окне выбрать необходимое устройство.

Более подробное описание этапов создания проекта представлено в документе «Контроллер программируемый ЭЛСИ-ТМК. Руководство по применению. Часть 1».

3.2.2 Пример программного кода для работы с IEC850

Ниже представлен пример программного кода выделения данных GOOSE сообщения с помощью набора функций групп *ByIdx* и *ByOffset* библиотеки **Elsylec850Library**. В данном примере осуществляется прием данных по смещению данных в Goose сообщении.

```
PROGRAM parsers test
VAR CONSTANT
 RX_LEN: UDINT := 1522; // размер буфера
END VAR
VAR OUTPUT
 // переменные для хранения данных
 // элементы структуры
 s byVar: BYTE;
 s uiVar : UINT;
 s udiVar: UDINT:
 s bVar: BOOL;
 s iVar: INT;
 s rVar: REAL:
 // базовые элементы
 fVar : REAL;
 udiVar : UDINT;
 CntErr_InitGoose: UDINT; // счетчики ошибок
 Errors: INT;
                          // значение ошибки
END_VAR
VAR
 goosesub: ElsyIEC850Library.GooseSub;
                                           // Добавление в программу ФБ GooseSub
 gs result: INT;
                                           // результат, возвращаемый с методов ФБ
 RX_BUF: ARRAY [0..RX_LEN] OF BYTE;
                                           // буфер для хранения кадра
 mainstate: UINT;
                                           // автомат состояний
END VAR
```

```
CASE mainstate OF
0: // устновка параметров для принимаемых данных
 goosesub.Key GOOSE slot := 1;
                                // связывание с ключом слота
 goosesub.Rx_data := ADR(RX_BUF); // указатель на буфер
 goosesub.Rx_len := RX_LEN;
                              // значение длины буфера
 mainstate := 1;
1: // инициализация блока
 gs result := goosesub.init();
 IF gs_result <> -1 THEN
                                 // не было ошибки при инициализации
         mainstate := 2;
 ELSE
         CntErr InitGoose := CntErr InitGoose + 1;
         Errors := goosesub.error;
         mainstate := 1001;
                                 // состояние ошибки - не обрабатывается
 END IF
2: // прием данных (цикл)
 gs_result := goosesub.receive();
                                 //результат метода приема данных
 IF gs_result > 0 THEN
         PARSE();
                                 // извлечение данных
 END IF;
END CASE
Программный код для метода PARSE() представлен ниже:
METHOD PARSE
VAR_INPUT
END_VAR
VAR
 NDSE: INT;
                                                 // число записей в dataset
 mDATASET POINTER: POINTER TO UDINT:
                                                 // указатель на тэг dataset
                                                 // смещенеие до dataset
 DATASET_OFFSET: INT;
 mSTRUCT POINTER: POINTER TO UDINT;
                                                 // указатель на тэг пользовательской структуры
 STRUCT_OFFSET: INT;
                                                 // смещение до струтуры во фрейме
 // смещения на базовые элементы
 fVar_OFFSET : INT;
 udiVar_OFFSET: INT;
 // результат выполнения
 RESULT: INT;
 pRESULT : POINTER TO INT := ADR(RESULT);
END_VAR
(* получить число записей в data set *)
NDSE := Elsylec850Library.Goose GetNumDataSetEntries( ADR(RX BUF) );
(* получить смещение data set *)
DATASET_OFFSET := Elsylec850Library.Goose_GetDatasetOffset( ADR(RX_BUF) );
(* проверить на ошибки смещения *)
IF DATASET_OFFSET <> -1 AND NDSE <> -1 THEN
```

```
(* установить указатель на тэг dataset *)
 mDATASET POINTER := ADR( RX BUF[DATASET OFFSET] );
(* получить элементы по смещению - не безопасно хранить offset и использовать для новых кадров *)
 (* определить смещение *)
 fVar OFFSET := Elsylec850Library.Goose GetEntryOffsetByldx( mDATASET POINTER, 2);
 udiVar_OFFSET := Elsylec850Library.Goose_GetEntryOffsetByldx( mDATASET_POINTER, 3);
 (* получить элементы *)
 fVar := Elsylec850Library.Goose_GetFloatByOffset(mDATASET_POINTER, fVar_OFFSET, pRESULT);
 udiVar := Elsylec850Library.Goose_GetInt32UByOffset(mDATASET_POINTER, udiVar_OFFSET, pRESULT);
 (* ИЛИ получить элементы по индексу - вычисление offset при каждом вызове *)
 // сброс
 fVar := 0:
 udiVar := 0;
 // получение элементов
 fVar := Elsylec850Library.Goose GetFloatByldx(mDATASET POINTER, 2, pRESULT);
 udiVar := Elsylec850Library.Goose_GetInt32UByIdx(mDATASET_POINTER, 3, pRESULT);
 (* получить смещение структуры *)
 STRUCT OFFSET := Elsylec850Library.Goose GetEntryOffsetByldx( mDATASET POINTER. 1);
 IF STRUCT_OFFSET <> -1 THEN
         (* установка указателя на тэг структуры *)
         mSTRUCT_POINTER := mDATASET_POINTER + INT_TO_DWORD(STRUCT_OFFSET); // или
         (* извлечение элементов из структуры по индексу *)
         s byVar := Elsylec850Library.Goose GetByteByldx( mSTRUCT POINTER, 1, pRESULT);
         s_uiVar := Elsylec850Library.Goose_GetInt16UByIdx( mSTRUCT_POINTER, 2, pRESULT);
         s_udiVar := Elsylec850Library.Goose_GetInt32UByIdx( mSTRUCT_POINTER, 3, pRESULT);
         s_bVar := Elsylec850Library.Goose_GetBoolByldx( mSTRUCT_POINTER, 4, pRESULT);
         s iVar := Elsylec850Library.Goose GetInt16ByIdx( mSTRUCT POINTER, 5, pRESULT);
         s_rVar := Elsylec850Library.Goose_GetFloatByldx( mSTRUCT_POINTER, 6, pRESULT);
 END IF
END IF
```

ПРИЛОЖЕНИЕ А (СПРАВОЧНОЕ) ПЕРЕЧЕНЬ МЕТОЛОВ БИБЛИОТЕКИ ELSYIEC850LIBRARY

Метолы ФБ *GooseSub*:

- *CheckState* проверка состояния ФБ. Метод возвращает следующие значения:
 - 0 успешное завершение;
 - -1 неудачное завершение.
- *Init* обеспечиват инициализацию и связываение экземпляра ФБ с функцией открытого в системе сетевого сокета. Метод возвращает следующие коды завершения:
 - 0 успешное завершение;
 - -1 неудачное завершение (код ошибки должен быть установлен на выходе error).
- *Receive* прием пользовательских данных. Метод возвращает следующие значения:
 - *-1* ошибка;
 - 0 успешное завершение, нет данных;
 - >0 успешное завершение, размер полученных данных.
- *Start* возобновляет прием данных в задачу. Метод возвращает следующие значения:
 - 0 успешное завершение;
 - -1 неудачное завершение (код ошибки должен быть установлен на выходе error).
- *Stop* блокирует прием данных (задаче данные не доступны). Метод возвращает следующие значения:
 - 0 успешное завершение;
 - -1 неудачное завершение (код ошибки должен быть установлен на выходе error).

Метолы ФБ *GoosePub*:

- *CheckState* проверка состояния ФБ. Метод возвращает следующие значения:
 - 0 успешное завершение;
 - *1* неудачное завершение.
- *Init* обеспечиват инициализацию и связываение экземпляра ФБ с функцией открытого в системе сетевого сокета. Метод возвращает следующие коды завершения:
 - 0 успешное завершение;
 - -1 неудачное завершение (код ошибки должен быть установлен на выходе error).
- Setup ставит на передачу заданный в устройстве буфер. Метод принимает следующие значения:
 - *False* сформирован пакет в режиме «работа»;
 - True сформирован пакет в режиме «тест».
 - Возвращает следующие коды оишбок:

- 0 успешное завершение, нет данных;
- -1 успешное завершение, размер полученных данных.
- *Stop* остановка передачи на системном уровне последнего покета данных. Метод возвращает следующие значения:
 - 0 успешное завершение;
 - -1 неудачное завершение (код ошибки должен быть установлен на выходе error).
- *Start* запуск передачи данных (после старта возобновляется передача старого пакета с временным разгоном (Multiplier, MinTime, MaxTime)). Метод возвращает следующие значения:
 - 0 успешное завершение;
 - -1 неудачное завершение (код ошибки должен быть установлен на выходе error).

ПРИЛОЖЕНИЕ Б (СПАРВОЧНОЕ) ПЕРЕЧЕНЬ ФЕНКЦИЙ БИБЛИОТЕКИ ELSYIEC850LIBRARY

Перечень функций библиотеки Elsylec850Library:

Служебные функции:

- Goose_GetDatasetOffset функция получения смещения на тэг dataset в кадре goose. Возвращает следующие значения:
 - -1 ошибка вычисления смещения;
 - 0..n смешение на тэг dataset.
- Goose_GetNumDataSetEntries функция получения числа записей в dataset кадра goose. Возвращает следующие значения:
 - *-1* ошибка;
 - 0..n число записей в dataset.

Функции группы ByIdx:

- Goose_GetBoolByIdx функция получения bool записи из dataset/структуры по орядковому номеру. Результат выполнения помещается по указателю RESULT:
 - *-1* ошибка;
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetByteByIdx функция получения int8u записи из dataset/структуры по порядковому номеру. Результат выполения помещается по указателю RESULT:
 - *-1* ошибка:
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetEntryOffsetByIdx функция получения смещения записи из dataset/структуры по порядковому номеру. Возвращает следующие значения:
 - *-1* ошибка;
 - 0..n смещение в dataset на тэг записи.
- Goose_GetFloatByIdx функция получения float32 записи из dataset/структуры по порядковому номеру. Результат выполнения помещается по указателю RESULT:
 - *-1* ошибка;
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetInt16ByIdx функция получения int16 записи из dataset/структуры по порядковому номеру. Результат выполнения помещается по указателю RESULT:
 - *-1* ошибка:
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetInt16UByIdx функция получения int16u записи из dataset/структуры по порядковому номеру. Результат выполнения помещается по указателю RESULT:
 - *-1* ошибка;
 - 0 нет ошибок, функция возвращает запрашиваемое значение.

- Goose_GetInt32UByIdx функция получения int32u записи из dataset/структуры по порядковому номеру. Результат выполнения помещается по указателю RESULT:
 - *-1* ошибка;
 - 0 нет ошибок, функция возвращает запрашиваемое значение.

Функции группы ByOffset:

- Goose_GetBoolOffset функция получения bool записи из dataset/структуры по смещению. Результат выполения помещается по указателю RESULT:
 - *-1* ошибка:
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetByteOffset функция получения int8u записи из dataset/структуры по смещению. Результат выполения помещается по указателю RESULT:
 - *-1* ошибка:
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetfloatOffset функция получения float32 записи из dataset/структуры по смещению. Результат выполения помещается по указателю RESULT:
 - *-1* оппибка:
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetInt16Offset функция получения int16 записи из dataset/структуры по смещению. Результат выполения помещается по указателю RESULT:
 - *-1* ошибка;
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetInt16UOffset функция получения int16u записи из dataset/структуры по смещению. Результат выполения помещается по указателю RESULT:
 - *-1* ошибка;
 - 0 нет ошибок, функция возвращает запрашиваемое значение.
- Goose_GetInt32UOffset функция получения int32u записи из dataset/структуры по смещению. Результат выполения помещается по указателю RESULT:
 - *-1* ошибка:
 - 0 нет ошибок, функция возвращает запрашиваемое значение.

 Π р и м е ч а н и е : более подробное описание функций представлено во вспомогательной документации среды программирования CoDeSys.

Список литературы

- 1) «Контроллер программируемый ЭЛСИ-ТМК. Руководство по применению».
- 2) «Разработка ПО для поддержки протокола GOOSE в ПЛК ЭЛСИ-ТМК. Частное техническое задание».

Контактная информация

По всем вопросам, связанным с эксплуатацией контроллера, обращаться в сервисный центр АО «ЭлеСи»:

тел.: +7 (3822) 49-94-94

E-mail: service@elesy.ru

Сервисный центр располагается в г. Томске (часовой пояс +4 МСК).

При обращении просим сообщать следующие данные:

- полное наименование изделия (указано на изделии или в паспорте);
- проект *CoDeSys*, в котором возникает проблема;
- версия установленного на компьютере пакета *EleSy PLC ELSYTMK TSP* (*Target Support Package*);
- подробное описание проблемы (постарайтесь наиболее полно пояснить суть проблемы и обстоятельства или условия, которые привели к ней). приемнр